Engineered-membranes: a novel concept for clustering of native lipid bilayers.
نویسندگان
چکیده
A strategy for clustering of native lipid membranes is presented. It relies on the formation of complexes between hydrophobic chelators embedded within the lipid bilayer and metal cations in the aqueous phase, capable of binding two (or more) chelators simultaneously Fig. 1. We used this approach with purple membranes containing the light driven proton pump protein bacteriorhodopsin (bR) and showed that patches of purple membranes cluster into mm sized aggregates and that these are stable for months when incubated at 19°C in the dark. The strategy may be general since four different hydrophobic chelators (1,10-phenanthroline, bathophenanthroline, Phen-C10, and 8-hydroxyquinoline) and various divalent cations (Ni(2+), Zn(2+), Cd(2+), Mn(2+), and Cu(2+)) induced formation of membrane clusters. Moreover, the absolute requirement for a hydrophobic chelator and the appropriate metal cations was demonstrated with light and atomic force microscopy (AFM); the presence of the metal does not appear to affect the functional state of the protein. The potential utility of the approach as an alternative to assembled lipid bilayers is suggested.
منابع مشابه
Lipid Phase Separation and Protein-Ganglioside Clustering in Supported Bilayers Are Induced by Photorelease of Ceramide.
Photolysis of 6-bromo-7-hydroxycoumarinyl-caged ceramide was used to generate ceramide with spatial and temporal control in supported lipid bilayers prepared from mixtures of caged ceramide and phospholipids. The caged ceramide molecules are randomly distributed in fluid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, and upon photolysis with long wavelength UV light small ord...
متن کاملEffect of functionalized gold nanoparticles on floating lipid bilayers.
The development of novel nano-engineered materials poses important questions regarding the impact of these new materials on living systems. Possible adverse effects must be assessed in order to prevent risks for health and the environment. On the other hand, a thorough understanding of their interaction with biological systems might also result in the creation of novel biomedical applications. ...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملA detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs
BACKGROUND The reconstitution of membrane proteins and complexes into nanoscale lipid bilayer structures has contributed significantly to biochemical and biophysical analyses. Current methods for performing such reconstitutions entail an initial detergent-mediated step to solubilize and isolate membrane proteins. Exposure to detergents, however, can destabilize many membrane proteins and result...
متن کاملNon-vesicular transfer of membrane proteins from nanoparticles to lipid bilayers
Discoidal lipoproteins are a novel class of nanoparticles for studying membrane proteins (MPs) in a soluble, native lipid environment, using assays that have not been traditionally applied to transmembrane proteins. Here, we report the successful delivery of an ion channel from these particles, called nanoscale apolipoprotein-bound bilayers (NABBs), to a distinct, continuous lipid bilayer that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of colloid and interface science
دوره 388 1 شماره
صفحات -
تاریخ انتشار 2012